If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-40x^2+20x+20=0
a = -40; b = 20; c = +20;
Δ = b2-4ac
Δ = 202-4·(-40)·20
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-60}{2*-40}=\frac{-80}{-80} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+60}{2*-40}=\frac{40}{-80} =-1/2 $
| 1/3y−12=38 | | 64/8=n/128 | | 6x-12=5+(2x-9) | | (5,-3)m=4 | | 2x+3=4(x-2)+8 | | -11=5(m-3) | | 3x–4=7x+4 | | x^2−24⋅x+135=0. | | 12,2x=148.84 | | (72+x)/2=85 | | (72+85)/2=x | | x=(72+85)/2 | | 360/n-1-360/n+1=6 | | 2b-5=23b=4 | | -4-n=13n=6 | | (88+x)/2=94 | | a+1/2=-1/4a=-3/4 | | (90+x)/2=95 | | (98+x)/2=98 | | (98+x)/2=100 | | (92+x)/2=95 | | x-12=42x=54 | | m+12=-16m=28 | | (88+x)/2=95 | | 6(15*x)=72 | | (88+x)=95 | | 0,7-y=-2y+1,5 | | (97+x)/2=97 | | Y=5x5-2x | | (88)+x/2=90 | | (66+x)/2=80 | | x²-17=18 |